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Abstract - An Ant Colony System (ACS) minimizer is implemented for the solution of the inverse radiative 
transfer problem associated to the estimation of the optical thickness, single scattering albedo and boundary 
surfaces diffuse reflectivities in a one-dimensional homogeneous medium. The ACS minimizer was 
implemented in a PC cluster using the MPI library yielding good speed-up and efficiency results. A 
hybridization of the ACS with the Levenberg- Marquardt method (LM) was also very effective in reducing the 
computational cost. The ACS minimizer and the hybridization ACS-LM are described, and test case results are 
discussed for both methods.  
 

1. INTRODUCTION 
Inverse radiative heat transfer problems have several relevant applications in many different areas such as 
astronomy, environmental sciences, engineering and medicine [7, 8, 11, 13, 17]. Some outstanding examples are 
parameter and function estimation for global climate models, hydrologic optics, and computerized tomography 
[1, 4, 5, 10, 12, 26]. 

When formulated implicitly [18], inverse problems are usually written as optimization problems. Several 
heuristics that mimic natural behaviors have been proposed for the solution of optimization problems. In 
particular some of the most recent algorithms, classified within the field of swarm intelligence [3], are based on 
the observation of social insects behaviour. 

In the last decade of the past century the Ant Colony System (ACS) was applied successfully for the solution 
of combinatorial optimization problems [9], and more recently it has been proposed for the solution of some 
specific inverse problems associated to the estimation of real-valued parameters [2, 16, 24]. 

In the present work is presented the application of ACS for the solution of an inverse radiative transfer 
problem in which we seek to determine the optical thickness, the single scattering albedo and the diffuse 
reflectivities at the inner side of the boundaries of a one-dimensional participating medium. As experimental data 
we consider the intensity of the emerging radiation measured at the boundary surfaces of the medium using only 
external detectors. 

Results for a hybridization of ACS with a deterministic gradient based method, the Levenberg-Marquardt 
method (LM), are also presented. The use of parallel computing in the computational implementation of the ACS 
is also briefly discussed. 
 
2. MATHEMATICAL FORMULATION OF THE DIRECT AND INVERSE RADIATIVE TRANSFER 
PROBLEMS 

2.1 Direct Problem 
In Figure 1 is represented a one-dimensional, gray, homogeneous, isotropically scattering participating medium, 
of optical thickness 0τ  whose boundaries reflect diffusely the radiation that comes from the interior of the 
medium. The boundary surfaces at 0=τ  and 0ττ =  are subjected to the incidence of radiation originated at 
external sources with intensities  and , respectively. 1A 2A

The mathematical model for the interaction of the radiation with the participating medium is given by the 
linear version of the Boltzmann equation [14], 
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where I  represents the radiation intensity, τ  is the optical variable, µ  is the cosine of the polar angle, i.e. the 
angle formed between the radiation beam and the positive τ  axis, ω  is the single scattering albedo, and 1ρ  and 

2ρ  are the diffuse reflectivities at the inner part of the boundary surfaces at 0=τ  and 0ττ = , respectively. The 
other symbols have already been defined. 
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Figure 1. Schematical representation of a one-dimensional participating medium subjected to the incidence of 
radiation originating at external sources. Y  represents the intensity of the radiation that comes out from the 
medium and may be measured by external detectors. 
 

When the geometry, the boundary conditions, and the radiative properties are known, problem (1) may be 
solved and the radiation intensity I  determined for the whole spatial and angular domains, i.e. 0 0ττ ≤≤ , and 

11 ≤≤− µ . This is the so called direct problem. 
In order to solve problem (1), we use Chandrasekhar`s discrete ordinates method [6] in which the polar angle 

domain is discretized as represented in Figure 2, and the integral term (in-scattering) on the right hand side of 
eqn. (1a) is replaced by a Gaussian quadrature. 

We then used a finite-difference approximation for the terms on the left hand side of eqn. (1a), and by 
performing forward and backward sweeps, from 0=τ  to 0ττ =  and from 0ττ =  to 0=τ , respectively, ),( µτI  
is determined for all spatial and angular nodes of the discretized computational domain. 
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 Figure 3. Schematical representation of the 

experimental data  acquired at 
0

2/,...,2,1, NiYi =
ττ = , and , iY 12/ += Ni , 

acquired at 
NN ,...,22/ +

0=τ . 

Figure 2. Discretization of the polar angle 
domain. 

 
 
 
 
 
2.2 Inverse Problem 
We now consider that the following vector of radiative properties is unknown 

{ TZ 210 ,,, ρρωτ= }
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                                                                                      (2) 
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but experimental data on the intensity of the radiation that leaves the medium is available, i.e. . 
As schematically represented in Figure 3, half of the data is acquired at the boundary 

NiYi ,...,2,1, =
0=τ , and half at 0ττ = , 

using only external detectors. 
From the experimental data available, we then try to obtain estimates for the unknown radiative properties. 

This is the inverse radiative transfer problem we want to solve. 
As the number of experimental data, , is usually larger than the number of unknowns, we may formulate the 

inverse problem as a finite dimensional optimization problem in which we seek to minimize the cost function 
(also known as objective function) given by the summation of the squared residues between calculated and 
measured values of the radiation intensity, 
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For the solution of the inverse problem described here, we have used a stochastic method, the Ant Colony 
System (ACS) as well as a hybridization of the ACS with the deterministic Levenberg-Marquardt method (ACS-
LM).  
 
3. THE ANT COLONY SYSTEM 
The Ant Colony System (ACS) is a method that employs a metaheuristic based on the collective behaviour of 
ants choosing a path between the nest and the food source [9]. Each ant marks its path with an amount of 
pheromone, and the marked path is further employed by other ants as a reference. As an example of this, the 
sequence in Figure 4 shows how ants, trying to go from point A to point E (Figure 4a), behave when an obstacle 
is put in the middle of the original path, blocking the flow of the ants between points B and D (Figure 4b). Two 
new paths are then possible, either going to the left of the obstacle (point H) or to the right (point C). The 
shortest path causes a greater amount of pheromone to be deposited by the preceding ants and thus more and 
more ants choose this path (Figure 4c). 
 
 
 
 
 
 
 
 
 
 (a) (b) (c) 
 
Figure 4. Paths followed by a group of ants from the nest (A) to the food source (E), [9]. (a) free path, (b) 
blockage caused by an obstacle, and (c) search for alternative paths with a concentration of ants on the shortest 
one (ABCDE). 
 

The behavior of the ants represented schematically in Figure 4 is then used for the formulation and solution of 
an optimization problem. 

In the ACS optimization method, several generations of ants are produced. For each generation, a fixed 
amount of ants (  is evaluated. Each ant is associated to a feasible path that represents a candidate solution, 
being composed of a particular set of edges of the graph that contains all possible solutions. Figure 5 represents 
the discretization of the feasible range for each unknown. Here we consider that the range for each of the  
unknowns, 

)na

ns

0τ , ω , 1ρ and 2ρ , is discretized in 128=np  values. Each unknown is then depicted as a range of 
discretized values and is considered a node of the problem. Each ant consists on a set of edges that links a set of 
nodes (one for each unknown). Each edge is defined by a pair of randomly chosen values of the corresponding 
unknowns. Figure 5 also shows three ants, being each one composed by its own set of edges. Choosing the 
unknowns on a probabilistic basis generates each ant. This approach was successfully used for the Traveling 
Salesman Problem (TSP) and other graph like problems [2]. The best ant of each generation is then chosen and it 
is allowed to mark with pheromone its path. This will influence the creation of ants in further generations. The 
pheromone put by the ants decays according to an evaporation rate denoted by decayφ . Finally, at the end of all 
generations, the best solution is assumed to be achieved. A solution (ant) is generated by linking the ns  nodes by 

 edges. In order to connect each pair of nodes,  discrete values can be chosen. This approach was ( 1−ns ) np
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developed in order to deal with real valued unknowns. In our inverse radiative transfer problem  corresponds 
to the total number of unknowns, i.e. 

ns
4=ns , as shown in eqn. (2) and in Figure 5. All possible edges are 

represented by an array  with  and ],[ ji nsi ,,2,1 K= npj ,,2,1 K= , being therefore  possible edges 
available. 

×  ns np

At the beginning of the algorithm, generation 0=k , all nodes of the array are assigned with the 
following concentration of pheromone . The amount 

],[ ji

0
0 φφ ==k

ij 0φ  is calculated with a greedy heuristics, as 

suggested in [3], using an evaluation of the objective function ( )ZQ
r

 given by eqn. (3), 
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As in the inverse problems we are not able to determine a priori a greedy heuristics, we decided to arbitrarily 
choose  ΤΤ∗∗∗∗∗ == }1 ,1 ,1 ,1{},,,{ 210 ρρωτZ

r
 in order to evaluate ( )∗ZQ

r
 to be used in eqn. (4). 

The best ant in a given generation is allowed to mark its path, i.e. its set of edges, with the maximum amount 
of pheromone, and this will have an influence on the choice of the ants in the following generation. Therefore, 
for the next generations, K,2,1=k , the amount of pheromone for all nodes is given by  

                         (5) 0
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where  is the Krönecker delta associated with the best ant in generation 1
,
−k
bestijδ 1−k , i.e. the one who yields the 

lowest value for the objective function at the preceding generation ( )1−k . 
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Figure 5. Schematical representation of the random generation of three ants. 
 

The probability of a given edge  to be chosen at generation k is given by [3,9] ],[ ji
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where ijη  is the visibility/cost of each edge, a concept that arises from the TSP, where the cost is the inverse of 
the distance of a particular edge.  

In eqn. (6) we assume that all edges are possible for any ant, but this is not the case for the TSP. The 
parameters α  and β  are weights used to establish a tradeoff between the influence of the pheromone and the 
visibility in the probability of choosing a given edge.  

There is an additional scheme for the choice of an edge for a new ant. According to roulette, a random number 
in the range [0, 1] is generated for the new ant and it is compared with a parameter  chosen for the problem. If 
the random number is greater than this parameter, the path is taken according to  in eqn. (6). If not, the most 
marked edge is assigned. 

0q

ijP

In our inverse radiative transfer problem each ant corresponds to a candidate solution. The ranges of the 
unknowns are discretized according to 000 ττ ≤≤  and 1,,0 21 ≤≤ ρρω . The radiative properties ω , 1ρ  and 

2ρ have physical meaning within the range [0,1], while 0τ  is mathematically unbounded in the upper limit. 
Nonetheless, in practical applications related to real inverse problem solution, we may consider an artificial 
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upper bound. Here we have considered 10 =τ . Note that for the calculation of 0φ in eqn. (4) we have used the 

upper bounds for all the unknowns in ∗Z
r

in order to determine ( )∗ZQ
r

. 
In the present work we have not included any visibility information, ijη . For instance, Preto et al. [16] 

considered the smoothness of the path as the visibility information for the estimation of the diffusion coefficient 
in a crystal growth inverse problem. The smoothness was then measured using Tikhonov’s regularization terms 
[25]. 

The feasibility of including visibility information for the inverse radiative transfer problem will be investigated 
in future works. In such case, we will consider also the use of a regularization term in eqn. (3). 
 
4. RESULTS AND DISCUSSION 

 
4.1 Pure ACS minimization  
As in most of stochastic optimization algorithms (and also deterministic algorithms), the quality of the solution 
obtained is related to the proper choice and fine tuning of the control parameters. For the ACS implementation 
performed in the present section we have considered: 03.0=decayφ  for the pheromone decay rate and  for 
the parameter related to the choice of a new edge; this value implies that edges are chosen according to eqn. (6). 
In this equation, since visibility was not taken into account, the control parameters were taken as 

0.00 =q

1=α  and 
0=β . 

We are interested in the estimation of the four unknown radiative properties given in eqn. (2). The range for 
each of the unknowns, already shown in the schematical representation given in Figure 5, is discretized into 128 
values. Therefore, as explained in the previous section, 4=ns  and 128=np . A total of 200 generations 

 are performed for each run of the ACS minimizer. At each iteration we consider a total number of 
 ants. 

( 200=mit )
128=na

As real experimental data was not available, we generated synthetic experimental data by adding noise to the 
values calculated for the exit radiation intensities using the exact values of the radiative properties. In all test 
cases we have considered noiseless data as well as data with noise in the order of, or smaller than, 2% and 5%. 

In order to evaluate the performance of the ACS minimizer we chose a relatively difficult test case with 
{ } { }95.0,10.0,50.0,00.1,,, 210 == T

exactZ ρρωτ
r

                                                                (7) 
The incident radiation was taken as  and 0.11 =A 0.02 =A  in eqns (1b) and (1c), respectively. The main 
difficulty for the solution of the inverse radiative transfer problem considered in this work is related to the 
estimation of 1ρ  since its effect will be sensed by the external detectors only after the radiation goes into the 
medium at 0=τ , is reflected at 0ττ =  and is then both transmitted and reflected at 0=τ . This difficulty is 
confirmed by the sensitivity analysis related to this particular unknown. 

For each set of experimental data (noiseless data, and 2% and 5% error noisy data) 10 different runs were 
performed, using different seeds for the random generation of the ants.  

In Table 1 are presented the best, worst and average (for the 10 runs) estimated values for the radiative 
properties. From the second to the fifth columns of Table 1 are shown the exact and estimated values for 

0τ ,ω , 1ρ  and 2ρ , respectively. In the sixth column of Table 1 are given the values of the cost function, ( )ZQ
r

 
defined by eqn. (3), and in the seventh column are presented the values for the square norm between the exact 
and estimated values for the radiative properties,  
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In order to assure convergence we have for convenience chosen a maximum number of 200 iterations (200 
generations), but we have checked for each run the iteration in which convergence has been achieved (when no 
further change was observed in the values of ( )ZQ

r
 and ). This information is given in the last column of 

Table 1. As expected, the analysis of the results presented in Table 1 show that the poorest estimates are related 
to the unknown

2d

1ρ . 

In Figure 6 is shown, for one particular run of the ACS minimizer, the evolution of the cost function, ( )ZQ
r

, as 
well as the evolution of the deviation between the exact and estimated values of the radiative properties, . In 
this particular run the set of noiseless data was considered. Similar behaviours were observed for the cases with 
noisy data. In Table 1 (as well as in Table 3) we observe that some results are repeated, i.e. the same ants appear 
in the test cases with different levels of noise in the experimental data. 

2d
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The ACS algorithm is not completely random, since it is somewhat controlled by the probability of generating 
the ants in a generation according to the amount of pheromone in the previous generation. This is strongly 
influenced by the seed used for the generation of random numbers employed in the generation of the ants. The 
use of the same seed may yield solutions that are equal or similar in different test cases (noiseless data and 2% or 
5% noisy data).      

 
 

Table 1: Best, worst and average estimated values in 10 runs of the pure ACS minimizer, with 200 generations 
and 128 ants for each generation. 

 

log ( )ZQ
r

 

log d  2

 0τ  ω  1ρ  2ρ  ( )ZQ
r

2d, eqn. (3) , eqn. (8) iteration 
Noiseless data        

best (seed 21)* 1.0000 0.5000 0.1016 0.9531 1.30E-05 1.22E-05 98 
worst (seed 75) 0.9531 0.5547 0.2891 0.9609 6.06E-05 4.11E-02 122 

average (10 seeds) 0.9766 0.5274 0.1954 0.9570 1.03E-05 1.04E-02 110 
Exact 1.00 0.50 0.10 0.95 0.00  

2% noisy data       
best (seed 21) 1.0000 0.5000 0.1016 0.9531 1.49E-05 1.22E-05 155 

worst (seed 75) 0.9531 0.5547 0.2891 0.9609 6.16E-05 4.11E-02 122 
average (10 seeds) 0.9766 0.5274 0.1954 0.9570 1.19E-05 1.04E-02 139 

exact 1.00 0.50 0.10 0.95 4.55E-07  
5% noisy data       
best (seed 97) 1.0000 0.4922 0.0781 0.9453 2.34E-05 5.62E-04 149 

worst (seed 75) 0.9531 0.5547 0.2891 0.9609 6.69E-05 4.11E-02 122 
average (10 seeds) 0.9766 0.5235 0.1836 0.9531 1.10E-05 8.10E-03 136 

exact 1.00 0.50 0.10 0.95 1.74E-06  
* The seeds used for the generation of the ants were chosen by randomly generating a real number in the range [0,1] and then 
scaling it up to the range [0,99] and picking the nearest integer. 
 
 

We have observed that the ACS minimizer, or inverse solver, is computationally intensive. For each run with 
200 generations, and 128 ants for each generation, a total of 25600 function evaluations is required, 
corresponding to about 17 minutes of CPU time on a AMD Athlon 1.67 GHz processor. We have used here a 
coarse mesh for the solution of the direct problem. If a typical finer mesh is used the CPU time goes up to 3 
hours.   

 

 
 
 
 
 
 
 
 
 
Figure 6. Evolution of the cost function, ( )ZQ

r
, and of the deviation between exact and estimated values of the 

radiative properties, , for one run of the pure ACS minimizer with noiseless experimental data. 2d

 

The most costly part of the algorithm is the evaluation of the ants, in which for each ant the solution of the 
direct problem given by eqns (1a-c) is required. Since the ants in each generation are totally independent, we 
noticed that the use of parallel computing could be quite effective, yielding high speed-up values and high 
efficiencies (close to 1). Therefore we have implemented a parallel version of the ACS minimizer using the MPI 
(Message Passing Interface) library [15] in order to execute it on a cluster of PCs. 
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In Table 2 are presented the results for the parallel implementation with p processors ranging from 2=p  to 
. We observe that the speed-up, 16=p ps TTSu /=  where and  represent the times required for serial and 

parallel computation, respectively, is close to the ideal value,
sT pT

pSu ≈ , as well as the efficiency, , that 
is  

pSuE /=
.1≈E

 

Table 2: Execution time, speed-up and efficiency for the parallel implementation of the pure ACS minimizer. 

Processors − p  Execution Time (s) Speed-up,  Su Efficiency,  E

1 

2 

4 

8 

16 

999.22 

501.43 

250.45 

125.76 

63.63 

⎯ 

1.99 

3.99 

7.95 

15.70 

⎯ 

1.00 

1.00 

0.99 

0.98 

 
 
4.2 Hybridization of ACS with the Levenberg – Marquardt method (ACS-LM)  
By probing the search space (range of the unknowns) in a random way, a stochastic method, such as ACS, may 
lead to the vicinity of the global optimum, if it is properly implemented computationally. Nonetheless the 
computational effort is usually high. 

Gradient based methods, such as the Levenberg-Marquardt method, are usually faster in their convergence, but 
they may get trapped in the closer local minimum. 

Recently, hybrid approaches, coupling stochastic methods and the Levenberg-Marquardt method have been 
used successfully for the solution of inverse heat transfer problems of parameter estimation [20, 21]: SA-LM 
(Simulated Annealing and Levenberg-Marquardt) and GA-LM (Genetic Algorithms and Levenberg-Marquardt). 
Other hybrid strategies combining stochastic and deterministic methods have also been implemented [5]. 

In such hybrid approach the stochastic method (SA or GA) is run for a small number of individuals and 
generations (or cycles), requiring therefore a much smaller number of function evaluations. The solution 
obtained with the stochastic method is then used as the initial guess for the gradient based method. If necessary 
this approach may be iterated. 

Artificial Neural Networks (ANN) have also been used for the same strategy of generating a good initial guess 
for the gradient based method: ANN-LM [22, 23]. 

Explicit and implicit formulations for the solution of inverse radiative transfer problems have also been 
combined in the same strategy [18, 19]. 

In the present work we have implemented the hybridization ACS-LM and the results will be presented next. 
The LM method will not be described here. Details may be found in [20, 21]. 

In this section, we considered the pure ACS minimizer described in Section 4.1, but now with only 25 
generations ( ), and only 16 ants (25=mit 16=na ) in each generation, requiring a total of 400 function 
evaluations for each run of the ACS minimizer, which represents only 1.56% of the computational effort 
required in the previous section.  

Other control parameters were also modified: 100 values for the discretization range of the unknowns, i. e. 
 and pheromone decay rate 100=np 30.0=decayφ .  

In Table 3 are presented the best, worst and average estimated values for the radiative properties in 10 runs of 
the pure ACS minimizer. As shown in the last column of Table 3, all runs converged in less than 25 iterations. 
The ACS runs were also performed in parallel using the PC cluster with 16 processors. 

The results obtained with the pure ACS minimizer, which are shown in Table 3, were then used as the initial 
guesses for the Levenberg-Marquardt method. The final results for such hybridization, ACS-LM, are shown in   
Table 4. The seventh column of the table shows the number of iterations required for the LM to converge within 
the tolerance of 10-5 in the deviation between two consecutive estimates for the radiative properties. In the last 
column of Table 4 it is shown the number of function evaluations (NFE) required for the convergence of the LM 
method. 
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Table 3: Best, worst and average estimated values in 10 runs of the pure ACS minimizer, with 25 generations 
and 16 ants for each generation.  Each set of estimated values will be used as the initial guess for the LM 
method.  
 

 0τ  ω  1ρ  2ρ  ( )ZQ
r

, eqn. (3) 2d , eqn. (8) iteration 
noiseless data        
best (seed 89) 0.84 0.61 0.46 0.95 1.62E-03 1.67E-01 20 

worst (seed 97) 0.70 0.68 0.67 0.97 1.92E-03 4.48E-01 17 
average (10 seeds) 0.77 0.65 0.57 0.96 1.34E-03 2.90E-01 19 

exact 1.00 0.50 0.10 0.95 0.00  
2% noisy data       
best (seed 89) 0.84 0.61 0.46 0.95 1.64E-03 1.67E-01 20 

worst (seed 97) 0.70 0.68 0.67 0.97 1.94E-03 4.48E-01 17 
average (10 seeds) 0.77 0.65 0.57 0.96 1.35E-03 2.90E-01 19 

exact 1.00 0.50 0.10 0.95 4.55E-07  
5% noisy data       
best (seed 89) 0.84 0.61 0.46 0.95 1.61E-03 1.67E-01 20 

worst (seed 97) 0.70 0.68 0.67 0.97 1.92E-03 4.48E-01 17 
average (10 seeds) 0.77 0.65 0.57 0.96 1.36E-03 2.90E-01 19 

exact 1.00 0.50 0.10 0.95 1.74E-06  
 
 
From the results shown in Tables 1 and 4 it can be seen that both the pure ACS minimizer and the 

hybridization ACS-LM proved to be robust yielding good estimates for the radiative transfer properties, even for 
experimental data with noise. As expected the poorest results were observed for 1ρ  which is due to the lowest 
sensitivity of the experimental data with respect to this parameter. 
 
 
Table 4: Results for the hybridization ACS-LM. The initial guesses for the LM method are shown in Table 3.  
 

 0τ  ω  1ρ  2ρ  ( )ZQ
r

, eqn. (3) 
LM 
iter. NFE1

Noiseless data        
best (seed 89) 0.999770 0.500368 0.101310 0.950050 9.88E-10 28 33 

worst (seed 97) 0.999685 0.500538 0.101891 0.950072 2.47E-09 35 44 
average  0.999728 0.500453 0.101601 0.950061 4.23E-10 19 24 
Exact 1.000000 0.500000 0.100000 0.950000 0  

2% noisy data       
best (seed 89) 0.999299 0.501001 0.104053 0.949981 3.14E-07 25 30 

worst (seed 97) 0.999417 0.500820 0.103418 0.949957 3.11E-07 29 46 
average 0.999358 0.500911 0.103736 0.949969 3.12E-07 18 25 
Exact 1.000000 0.500000 0.100000 0.950000 4.55E-07  

5% noisy data       
best (seed 89) 0.999443 0.502393 0.107760 0.949900 1.43E-06 21 30 

worst (seed 97) 0.996418 0.508108 0.127230 0.950642 1.81E-06 34 50 
average 0.997931 0.505251 0.117495 0.950271 1.43E-06 15 23 
exact 1.000000 0.500000 0.100000 0.950000 1.74E-06  

1NFE ≡ Number of function evaluations 
 
 
6. CONCLUSIONS 

In the present work, both the Ant Colony System algorithm (ACS) and the hybridization of such method with 
the gradient based Levenberg-Marquardt method, ACS-LM, yielded good estimates for the radiative properties 
of a one-dimensional participating medium using the measured data of the intensity of the radiation acquired 
only by external detectors. 

In future works we intend to compare the performance of the method with other stochastic methods.  
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